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USA 
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Abstract. Noether’s theorem ana’ Noether’s inverse theorem for generalised mechanical 
systems described by Lagrangian functions of the second order and non-conservative forces 
are established. The existence of the first integral depends on the existence of solutions of 
the generalised Noether-Bessel-Hagen equation. The theory is based on the idea that the 
transformations of time and generalised coordinates together with non-conservative forces 
determine the transformations of velocities and accelerations. An illustrative problem is 
discussed. 

1. Introduction 

Problems in the calculus of variations whose Lagrange function involves higher-order 
derivatives have received considerable attention ever since the origins of the subject in 
the early eighteenth century. The interest in second-order problems lies in the fact that 
the corresponding results can be applied to different branches of physics. Such 
problems enjoy considerable attention in relativity and continuum mechanics. Also, at 
the present time, efforts have been made to establish a ‘generalised mechanics’ and a 
‘generalised electrodynamics’ by including higher-order derivatives in the Lagrangian. 

Higher-order variation problems are studied in most textbooks on the variational 
calculus. Advanced monographs have been written by Grasser (1967) and Logan 
(1977). Conservation laws for higher-order problems were originally considered by 
Noether (1918), while Anderson (1973) puts the theory in more modern form. 
Conservation laws for second-order variational problems, whose corresponding Euler 
equations are of fourth order, are discussed by Blakeslee and Logan (1976) and Logan 
(1977). 

Here, we will concentrate our attention on the conservation laws for a system of 
ordinary differential equations of fourth order, but where the existence of the cor- 
responding variational principle is not imposed. It will yield a significant extension of 
the previous results. Our theory is based on Noether’s theory for classical non- 
conservative mechanics (see Djukic and Vujanovic 1975, Vujanovic 1978). 

In this paper the following conventions will be observed: (1) the summation 
convention is employed throughout; (2) lower case italic indices imply a range of values 
from 1 to n.  The paper also uses the terminology of generalised mechanics. 

i On leave from the University of Novi Sad, 21000 Novi Sad, Yugoslavia. 
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Let us consider a generalised mechanical system with n degrees of freedom, where 
the q i  are regarded as the generalised coordinates and t is time. The conservative part 
of the system can be described completely by a Lagrangian function of second order, 
L ( t , q l , .  . . , q n , q l , .  . . , q n , q l , .  . . , qn )=L( t ,q ,q ,q ) ,  where ' = d / d t  and "=d2/dt2.  
Let the corresponding differential equations of motion be 

where the symbol = is employed to represent an equality holding only 'along the orbit', 
i.e., for q(t)  satisfying the equations of motion. Here, the generalised non-conservative 
forces Qi are functions of the variables indicated. The governing equations of motion 
(1) form a system of fourth-order ordinary differential equations. The corresponding 
conservation laws in the works of Noether (1918)' Anderson (1973), Blakeslee and 
Logan (1976) and Logan (1977) are obtained for the case when the system does not 
contain non-conservative forces, that is when Qi = 0. 

2. Noether's theorem 

Let us consider a continuous one-parameter transformation of the generalised co- 
ordinates, generalised velocities, generalised accelerations and time of the form 

t- t + &(t, q, 4,Li') (2) 

4' "4' + 4 ' ( t ,  q ,4 ,4)  (3) 

dq'/dT2:ci'+E[&'-4'rl.+CP1(t,q,4,Li., q ) ]  (4) 

d2q'/d t" - q'  + E[$' - 24'4 - 4'4 + 4' + U '  ( r ,  q, 4, q, q, q )] ( 5 )  

where E is a small parameter of the transformation and 4, 4', CP' and w'  are functions of 
the corresponding variables. In the existing forms of Noether's theory for the system 
( l ) ,  where Q, are equal to zero, the functions CP' and U '  are identically equal to zero, that 
is the transformations of velocities and acceleration are known completely by the 
transformations of time and coordinates. Here, through the quantities 0' and U ' ,  the 
effect of non-conservative forces will be introduced. Thus, corresponding to (2)-(5) 
there exists an infinitesimal transformation of the form 

At - €4 Aq' = €4' A d '  E ( & '  -4'4 + a') (6) 

( 7 )  LI E($1 -2q14 - d 1 &  +&' 

Further, let us assume that the infinitesimal transformation (6) and (7) induces a 
function X ,  given by 

(8) d X =  L(t, q, 4, 4) dt, 

to be gauge variant, i.e. to be 'invariant up to an exact differential' in the sense that 

A(dX) L( q, dq/d< d2q/dt') dT- L(t, q ,4 ,4)  d t  = E dA(t, q,4, 4, if) (9) 

where A is a known function of t, q, 4, 4 and q. Now, combining (2), (6), (7) and (9), 
developing the term L(< . . . , d2q/dt2) in series and retaining only members linear in 
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the small parameter E ,  the expression (9) becomes 

where 
n'+'-q'*. 

From (lo),  after simple manipulation and use of ( l ) ,  we have 

A(d2)  d 
dt  

dL , dL * ' 

+ E  -@'+-(a' + U ' ) -  
(aq '  aq '  

Assuming that the functions a', U' and R' satisfy the equation 

and remembering that the generalised mechanical system under consideration moves in 
agreement with the equations ( l ) ,  we may deduce the following theorem from (9) and 
(12). 

Theorem I (Noether). If the expression (8) is gauge variant in the sense of equation (9) 
under the one-parameter infinitesimal transformation (6) and ( 7 ) ,  which satisfies 
equation (1 3), then the quantity 

aL d a~ aL . i 
ad' d t  a$ aq"  

D(t,  q, 4, q, q )  = Lqj + (--- -)a' +-a - A 

is a first integral (D  = constant) of the equations of motion (1). Further, combining (9), 
( lo) ,  (11) and (13) we have the necessary condition for the functions $ and R', which 
must be satisfied if the expression (8) is gauge variant under the infinitesimal trans- 
formations (6) and (7): 

while the functions ai and mi  must satisfy equation (13). The equations (13) and (15) 
may be called the generalised Noether-Bessel-Hagen equations (see Djukic and 
Vujanovic 1975) for non-conservative generalised mechanical systems. For the case of 
a conservative mechanical system, i.e. when Qi = 0, the equations (14) and (15) 
constitute the classical form of Noetherian theory (see, for example, Logan 1977, pp 
117-24). In practical applications, if the equation (15) admits a solution for 4 and R', 
then a conserved quantity (14) automatically exists. Here we may remark that after 
integration of equation (15) with respect to 11, and R' the functions ai and u i  can be 
easily found from equation (13) (for example, choosing the functions a' and after that 
solving the corresponding algebraic equation for U ' ) .  

Remembering (see (2), (3) and (1 1)) :hat the functions CC, and R' do not depend on 
the 4' ' s  and ij'i's and developing explicitly the time derivatives I/, and hi (for example, 
& = a + / a t + q '  d + / d q i + q '  a $ / a q ' + q '  a $ / a q ' )  we can split equation (15) into a system 
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of linear partial differential equations with respect to 1c, and Cl' (for this the procedure 
from Djukic and Vujanovic (1975) and Vujanovic (1978) must be generalised). The 
equations may have two forms. The first form will be obtained if we consider the q ' 's  as 
the independent variables in (15). The second form will be established if we express the 
q "s in terms of t, q', d ' ,  4 '  and if', by using the differential equations of motion ( l ) ,  and 
substitute these relations in (15) (see Vujanovic 1978). In both cases the question of the 
integrability conditions for these systems of partial differential eqbations is raised 
immediately. 

3. Noether's inverse theorem 

Using the explicit form of the equations of motion ( l ) ,  the time dependence of a given 
arbitrary quantity G(t, q, q, q, q )  may be expressed as 

where 

J is the inverse matrix to the matrix H of the Lagrangian 

H f O  HiJki  = Sk 
a2L H.. =- 

'I  a i '  ai'" 
and Sf is the Kronecker delta symbol. Combining (16) and (12) we have the identity 

which must hold for any choice of the infinitesimal transformation (6) and (7). In the 
special case when 

where C1 is an arbitrary constant, from (19) we have 

E f G  = -- 
dt 
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and therefore (16) can be written in the form 

E A .  
d G  . A(d2) 
dt  dt 

E-=-- 

When we apply this equation to a constant of motion G, that is, when dG/dt= 0, we 
obtain A(d2)  = E dA. Hence we have the following theorem. 

Theorem 11 (Noether's inverse). To every constant of motion G for the generalised 
mechanical system described by the Lagrangian L and non-conservative forces Qi, 
there corresponds an infinitesimal transformation satisfying (20) and (21) that leaves 
the expression (8) gauge variant in the sense of equation (9). 

Remark. The infinitesimal transformations which satisfy (20) and (21) are not unique. 
For example, one solution to (20) is 

while for the solutions of (21) the previous discussion after theorem I is valid. 

4. An example 

To illustrate the present theory, let us consideia generalised mechanical system with 
one degree of freedom (q = x), whose Lagrangian function and non-conservative force 
are 

Q = px + (p2 /a2)x  - (2p /a )x  (25) 

[ ( 2 ~ / a ) x x  - (p2/a2)xx], (26) 

[ ( F m ) x  -J l .  (27) 

(28) 

L='"2 2x +iax2+ibx2  

where a, b and F are arbitrary constants. Assuming the function A to be of the form 
A = 

we have a solution to the Noether-Bessel-Hagen equation (15) as 
(I, = e-wt/a a = e - d a  

Substituting (25)-(27) into (14) we obtain a conserved quantity for the system 

D = i e-filf/a{bx2- a i 2  -xz + wx[x + ( p / a 2 ) i ] +  2xx- (p /a ) ( xx  + i t ) ) .  
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